

Technical Report

Ref. #: PROS-TR-2011-15

Title: A Software Architecture for Model Driven Method Engineering

Author (s): Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano

Corresponding
author (s):

Mario Cervera, mcervera@pros.upv.es
Manoli Albert, malbert@pros.upv.es
Victoria Torres, vtorres@pros.upv.es
Vicente Pelechano, pele@pros.upv.es

Document version number: 1.0 Final version: Yes Pages: 16

Release date: July 2011

Key words: Software Architecture, Method Engineering, Eclipse, MOSKitt

A Software Architecture for Model Driven Method
Engineering

Mario Cervera, Manoli Albert, Victoria Torres, Vicente Pelechano

Universidad Politécnica de Valencia · Camino de Vera s/n · Edificio 1F · 46022 Valencia Spain ·

T. +34 96 387 70 07 Ext. 83530 · M. + 34 619 543 623 · F. +34 96 387 73 59 · info@pros.upv.es · www.pros.upv.es

http://www.pros.upv.es/
mailto:mcervera@pros.upv.es
mailto:malbert@pros.upv.es
mailto:vtorres@pros.upv.es
mailto:pele@pros.upv.es

Chapter 4

A Software Architecture

CAME and metaCASE technology is still immature. Existing environments

mostly represent incomplete prototypes that present important deficiencies

[Niknafs08]. Furthermore, these tools are generally based on rigid

architectures that hinder their adaptation to new contexts of use. In order to

avoid this problem, software architectures for Method Engineering supporting

tools should be defined according to a set of design guidelines. In this work

the following are proposed:

 Technology-independence: the software architecture must be defined

in a technology-independent fashion in order to decouple them from

technological details. This approach increases the longevity of the

architecture as its components do not become obsolete on account of

technology changes.

 Modularization: the architecture must be defined in terms of loosely-

coupled components. The main benefit of this approach is that tools

implementing a modular architecture are composed of separate

components, and thus they are easier to extend, modify and adapt to

new requirements.

 Separation of concerns: the software architecture must separate

components that deal with Method Engineering tasks from components

that deal with ISD tasks. The former components make up the structure

of the CAME part, which enables tasks such as method design. On the

other hand, the latter components form the CASE part, which supports

ISD tasks such as system specification.

Taking these guides into account, this chapter defines a modular software

architecture that identifies the set of technology-independent components (and

the relationships among them) that are required to support the methodological

framework presented in chapter 3. In addition, as a proof of concept of the

proposal, a vertical prototype has been developed in the context of the

MOSKitt platform. This prototype, called MOSKitt4ME, implements the

proposed architecture and its main goal is to set the basis for the eventual

development of a CAME environment that supports the design and

implementation of methods, without presenting the deficiencies of current

CAME and metaCASE technology.

This chapter is structured as follows: first, section 4.1 describes the

requirements that the proposed architecture must address in order to provide

complete support to the methodological framework. Then, section 4.2 presents

the architecture in detail and also its implementation on the MOSKitt

platform. Finally, section 4.3 concludes the chapter.

4.1. Architecture requirements

This section describes in detail the requirements that the proposed architecture

must address in order to adequately support the methodological framework

proposed in chapter 3. Specifically, this section is divided into two

subsections, dealing respectively with the requirements of the CAME and

CASE parts of the architecture.

4.1.1. Requirements for the CAME part

The CAME part of the architecture must include the required components to

allow the method engineer to perform the method design and configuration

phases of the methodological framework, and to invoke the CASE tool

generation process that obtains the method implementation. Therefore, the

following requirements have been identified:

Req. 1. A modeling tool for building method definitions

A modeling tool (a method editor) must be included in order to support the

definition of software production methods based on a Method Engineering

language such as the SPEM standard. Therefore, this tool allows the method

engineer to perform the method design phase of the methodological

framework.

As described in chapter 3, the method design can be performed from

scratch or reusing conceptual fragments that are stored in a repository.

Therefore, the modeling tool must also implement mechanisms that enable the

integration of conceptual fragments into the method under construction.

Furthermore, it must allow the method engineer to select parts of the method

and create new conceptual fragments from these parts. This is done by means

of a repository client (see req. 2).

It is also important to emphasize that the lack of a method editor is the

major shortcoming of the metaCASE approach, since metaCASE tools

generally focus on the method implementation. In general, metaCASE

environments provide editors that enable the specification of the design

notations that will be supported by the CASE tool under construction, but do

not support the definition of software production methods that can be enacted

in real software development projects.

Req. 2. A repository to store method fragments and mechanisms to access

the repository

The method engineer must be able to reuse conceptual fragments during the

method design. In addition, during the method configuration, he/she must be

able to associate the tasks and products of the method with technical

fragments that establish how these elements will be managed in the generated

CASE tool. Therefore, mechanisms to connect the method editor and the

repository containing these fragments must be provided. These mechanisms

can be represented by a repository client. A repository client allows the

method engineer to access the repository and search and select method

fragments. For this purpose, the repository client must provide mechanisms

for specifying the requirements of the fragments to retrieve. For instance,

these requirements can be specified as queries that are formulated by giving

values to the method fragment properties (i.e. type, origin, objective, etc.).

Furthermore, the repository client must also allow the method engineer to

store in the repository fragments that are created during the method design.

These fragments can be later reused during the specification of other methods.

Req. 3. Mechanisms for the enactment of the Method Engineering

process

The specification of software production methods is a task that must be

adequately guided so that the method engineer can perform it properly. For

this reason, a process that establishes the procedures and activities that must

be followed during the method definition has to be defined. In order to

support the execution of this process, a process engine can be included in the

architecture. However, note that the inclusion of a process engine requires that

the process is defined by means of an executable Process Modeling Language.

Another possibility is to avoid the use of a process engine and define this

process as a wizard or tutorial that textually guides the method engineer

during the method definition.

Req. 4. A transformation engine

In order to automate the CASE tool generation process, a transformation

engine is needed. The transformation engine is in charge of executing the

model transformation that takes as input the model of the method (produced

by means of the method editor) and obtains a CASE tool that supports it.

4.1.2. Requirements for the CASE part

The CASE part of the architecture must include the required components to

allow the software engineer to perform the method enactment. Therefore, the

following requirements have been identified:

Req. 5. Software tools that support the product part of the method

Software tools such as graphical editors, model transformations, etc. must be

included in the generated CASE tool in order to support the creation and

manipulation of the method products. These tools constitute the dynamic part

of the CASE environments, since they depend on the method that has been

specified. On the other hand, the static part corresponds to the tools that are

always included in the CASE tools and, therefore, are independent of the

specified method (see requirements 6 and 7).

Req. 6. Software tools that support the process part of the method

Tools such as a process engine must be included in the generated CASE tools

in order to support the execution of the process part of the specified method.

Thus, these tools provide a means for conducting the orchestration of the

different tools that allow the creation and manipulation of the method

products (see req. 5). Specifically, these tools are a static part of the generated

CASE tools, in the sense that they are independent of the specified method.

It is important to note that, the method must be specified in an executable

language (such as the BPMN 2.0 standard [BPMN]) so that it can be executed

in a process engine. In case the method is specified by means of a non-

executable language (such as SPEM) a model transformation is required to

transform the process model into an executable representation.

Req. 7. Project management mechanisms

The generated CASE tools must be endowed with a graphical user interface

that allows software engineers to execute method instances (i.e. software

development projects) by means of the tools that support the process part (see

req. 6) and to invoke the tools that permit to create the method products (see

req. 5). Like the tools that support the process part, the implementation of this

graphical interface is independent of the specified method and, therefore, it is

always included in the generated CASE tools.

4.2. The proposed architecture

This section describes the software architecture that is proposed in this work

in order to meet the requirements presented in the previous section.

Specifically, this section is divided into three subsections. First, section 4.2.1

defines the software architecture. Then, section 4.2.2 briefly presents some

technological background that is needed in order to better understand how the

proposed architecture has been implemented in the context of Eclipse (more

specifically, on the MOSKitt platform). Finally, section 4.2.3 presents the

implementation of the architecture, that is, the MOSKitt4ME prototype.

4.2.1. Conceptual definition

The proposed architecture (see Fig. 4.1) contains the set of loosely-coupled

and technology-independent components that are required to support the

methodological framework, i.e. to meet the requirements defined in section

4.1. These components are mainly divided into CAME components and

CASE components, and refer to the components that pertain respectively to

the CAME and CASE parts of the architecture.

Fig. 4.1. Architecture components overview

CAME components

The CAME components make up the infrastructure of the CAME part of the

architecture and are intended to meet from requirement 1 to requirement 4.

Specifically, a method editor component (req. 1) has been included to allow

the method engineer to perform the method design. During the construction of

the method model, the method engineer can make use of the repository in

order to reuse method fragments. For this purpose, the repository client (req.

2) is used. In general, the repository client allows the method engineer to

connect to the repository, and select, reuse and store method fragments.

Furthermore, the enactment component (req. 3) assists him/her during the

whole method definition process. Finally, the resulting method model is fed

into the transformation engine (req. 4) in order to obtain the method

implementation (i.e. the CASE tool supporting the method). The method

implementation is obtained by means of a model transformation that

automates the generation process.

CASE components

The CASE components make up the infrastructure of the CASE part of the

architecture and are intended to meet from requirement 5 to requirement 7.

Specifically, the dynamic part (i.e. the components that are dependent on the

specified method) is composed of the technical fragments (req. 5). These

components provide support to the product part of the method. On the other

hand, the static part is composed of a process engine (req. 6), which provides

support to the process part of the method, and the project manager component

(req. 7), which embodies the graphical user interface that allows the software

engineer to perform the method enactment.

4.2.2. Technological background

This subsection provides some technological background that is needed to

facilitate the understanding of the prototype that has been developed in the

context of Eclipse in order to implement the proposed architecture.

The Eclipse platform

Eclipse is an open source community, whose projects are focused on building

an open development platform comprised of extensible frameworks, tools and

runtimes for building, deploying and managing software across the lifecycle.

Specifically, there are two features of Eclipse that turn it into a very suitable

platform to support Method Engineering approaches in the field of MDD:

 The Eclipse plugin-based architecture. Everything in Eclipse is a plugin

but its runtime kernel. This means that Eclipse employs plugins to

provide all of its functionality. This architecture allows developers to

easily build Eclipse-based applications upon the Rich Client Platform

(RCP)1. The RCP is, roughly speaking, the minimal set of plugins

required to build an Eclipse application. This approach facilitates the

development of the prototype, since the different components of the

architecture can be developed as separate plugins that are easy to

integrate into the same platform.

 The modeling technologies and tools. Within the Eclipse community a

wide range of projects aim at providing as Eclipse plugins new tools

and technologies for the support of different tasks. Specifically, one of

these projects is the Eclipse Modeling Project [EMP] which focuses on

model-based development technologies. This project contributes to

1 Rich Client Platform , http://www.eclipse.org/home/categories/rcp.php

facilitate the development of the prototype, since it provides effective

solutions for applying MDD techniques.

Below, the most significant Eclipse technologies that have been used in the

development of the prototype are described.

Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [EMF] is a modeling framework

and code generation facility for building tools based on a structured data

model. From a meta-model specification (called the “Ecore model”) described

in XMI, EMF provides a generator that produces a tree-based editor, together

with the set of Java classes that implement the meta-model and allow the user

to create models that conform to the meta-model. Therefore, EMF has been

used as the underlying technology for the construction of the method models,

which are stored in XMI format and conform to the SPEM Ecore model (i.e. a

SPEM meta-model implementation for Eclipse).

Eclipse Process Framework Project

The Eclipse Process Framework (EPF) [EPF] aims to provide an extensible

framework and exemplary tools for software process engineering.

Specifically, one of these tools is the EPF Composer editor, which is an

Eclipse-based editor that supports the construction of SPEM models in XMI

format (based on EMF). Therefore, this tool has been used as the method

editor component of the architecture.

Plug-in Development Environment

The Plug-in Development Environment (PDE) [PDE] provides tools to create,

develop, test, debug, build and deploy Eclipse plug-ins and Eclipse-based

applications. Therefore, the functionality provided within the PDE has been

used for facilitating the construction of the CASE tools that are generated

from the method specifications. Specifically, the developed prototype makes

use of the Product Configuration Files. These textual files contain all the

required information (list of plugins, paths of images, etc.) to automatically

build Eclipse applications from them. Hence, the model transformation that

obtains the CASE tool support is in fact a M2T transformation that generates

a product configuration file through which the final tool is obtained.

Xpand

Xpand [Xpand] is a statically-typed template language for implementing M2T

transformations. Xpand was originally developed as part of the

openArchitectureWare (oAW) project2 before it became a component under

Eclipse. Specifically, it is the language that has been used for implementing

the M2T transformation that obtains product configuration files from method

specifications.

4.2.3. MOSKitt4ME: An Eclipse-based CAME environment

In order to evaluate the proposed architecture, a vertical prototype, called

MOSKitt4ME, has been developed in the context of Eclipse, more

specifically, on the MOSKitt platform [MOSKitt]. In particular, this

subsection details how the different components of the architecture have been

implemented in MOSKitt.

Method editor

The method editor is the software component that supports the creation of

method models. In particular, the methodological framework proposes the use

of the SPEM standard as the Method Engineering language to carry out this

task. Therefore, MOSKitt4ME must provide a method editor that enables the

creation of SPEM models. For this purpose, the EPF Composer editor [EPF]

has been integrated in MOSKitt. Fig 4.23 shows a snapshot of this editor.

Repository client

The repository client component must allow the method engineer (1) to

connect to the repository, to (2) search and select method fragments for their

use during the method design and configuration phases, and (3) to store newly

created fragments. For this purpose, a repository client has been implemented

as an Eclipse view. This view shows in a tree-based fashion the content of the

repository it is connected to and provides searching capabilities based on

fragment properties. In order to illustrate this idea, Fig. 4.3 and Fig. 4.4 show

2 http://www.openarchitectureware.org/
3 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/

http://www.openarchitectureware.org/

this Eclipse view connected to the Method Base and Asset Base repositories

respectively.

Fig. 4.2. EPF Composer editor in MOSKitt

Fig. 4.3. Repository client (Method Base)

Fig. 4.4. Repository client (Asset Base)

Enactment component

A process engine has not been integrated into the prototype to guide method

engineers during the method definition. Instead, two eclipse cheatsheets have

been defined to assist during the method design and configuration phases of

the methodological framework.

Transformation engine

In order to support the execution of the model transformation that generates

the CASE tool support from method models, Xpand has been installed in the

prototype. The Xpand plugins implement, among other things, the

transformation engine that supports the execution of Xpand transformations.

Specifically, the model transformation has been implemented in the

prototype as a M2T transformation that takes as input a SPEM model and

obtains a product configuration file through which a MOSKitt reconfiguration

supporting the method is obtained. As an example, two Xpand rules of the

transformation are shown in Fig. 4.5. In these rules the list of features4 of the

product configuration file is generated. The first rule is invoked for each

instance of the SPEM class ContentElement (i.e. tasks and products). This rule

invokes the second rule, which produces the output. The second rule accesses

the property “FeatureID” of the content elements. This property is created

4 A feature is a group of Eclipse plugins

during the technical fragment association and contains the identifier of the

feature packaged in the fragment.

Fig 4.5. Excerpt of the M2T transformation

Technical fragments

Technical fragments are editors, transformations, etc. that provide support to

the product part of the method in the generated CASE tools. These fragments

are stored in the Asset Base repository as reusable assets that contain the

Eclipse plugins that implement the encapsulated tool and the feature that

groups these plugins (see Fig. 4.6). In order to install these plugins in the

CASE tools, the M2T transformation must include in the product

configuration file the features encapsulated in the fragments. This is done in

the rules shown in Fig. 4.5.

Fig. 4.6. Technical fragment

Process Engine

The process engine is the component in charge of the execution of method

instances, that is, it gives support to the process part of the method in the

generated CASE tools. Up to now, the process engine has been implemented

in MOSKitt4ME as a light-weight process engine that keeps the state of the

running method instances. As future work, the integration of the Activiti

engine [Activiti] into MOSKitt4ME is being planned. The use of Activiti will

require the definition of a model transformation to map SPEM models into

BPMN 2.0 models that can be executed by the engine.

Project Manager Component

The Project Manager Component endows the generated CASE tools with a

graphical user interface composed of a set of Eclipse views (see Fig. 4.75).

Each of these views provides a specific functionality but their common goal is

to facilitate the user participation in a specific project. The details of these

views are the following:

 Product Explorer: This view shows the set of products that are handled

(consumed, modified and/or produced) by the ongoing and finished tasks

of the process. This view can be filtered by roles so that users belonging

to a specific role have only access to the products they are in charge of.

Then, from each product, the user can open the associated editor to

visualize or edit its content.

 Process: This view shows the tasks that can be executed within the

current state of the project. The execution of the tasks can be performed

automatically (by launching the transformation associated to the task as a

technical fragment) or manually by the software engineer (by means of

the software tool associated to the output product of the task). Similarly to

the Product Explorer, this view can be filtered by role, showing just the

tasks in which the role is involved in.

 Guides: This view shows the list of guides associated to the task selected

in the Process view. The objective of these guides is to assist the user

during the execution of such task, providing some insights on how the

associated products should be manipulated. These guides correspond to

technical fragments that were associated to tasks during the method

configuration phase.

5 Also available at https://users.dsic.upv.es/~vtorres/moskitt4me/

 Product Dependencies: This view shows the dependencies that exist

between the products that are handled in the project. So, it allows users to

identify which products cannot be created or manipulated because of a

dependent product has not yet been finished. In addition, these

dependencies are organized by roles. This organization gives to the user

the knowledge of who is responsible of those products he/she is interested

in.

Fig. 4.7. Project Manager Component

4.3. Conclusions

Developing software systems is a highly complex endeavor and CAME and

metaCASE environments are no exception. A solution that properly handles

this complexity is software architecting. One of the main benefits of a

software architecture is that it provides an abstraction of the system that

establish how it must be structured and, thus, allow developers to focus only

on those elements that are significant. Therefore, in order to reduce the

complexity that entails the development of tools that support Method

Engineering, this chapter proposes a software architecture that establishes the

series of components that are required to support the methodological

framework presented in chapter 3.

Furthermore, a vertical prototype called MOSKitt4ME has been developed

in the context of the MOSKitt platform as an implementation of the

architecture. The development of this prototype has a threefold benefit. First,

it helps to evaluate the proposed architecture. Secondly, it sets the basis for

the eventual development of a complete CAME environment. Finally,

stakeholders within the MOSKitt community can use the prototype and

provide feedback that can be used for the refinement of the architecture and

the methodological framework.

References

[Activiti] Activiti, http://www.activiti.org/

[BPMN] Business Process Model and Notation (BPMN). OMG Available

Specification version 2.0. OMG Document Number: dtc/2010-06-05

[EMF] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

[EMP] Eclipse Modeling Project, http://www.eclipse.org/modeling/

[EPF] Eclipse Process Framework Project (EPF), http://www.eclipse.org/epf/

[MOSKitt] MOSKitt, http://www.moskitt.org/

[Niknafs08] Niknafs, A., Ramsin, R.: Computer-Aided Method Engineering:

An Analysis of Existing Environments. CAiSE, 525-540 (2008)

[PDE] Plug-in Development Environment, http://www.eclipse.org/pde/

[Xpand] Xpand, http://www.eclipse.org/modeling/m2t/?project=xpand

http://www.activiti.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/
http://www.moskitt.org/
http://www.eclipse.org/pde/
http://www.eclipse.org/modeling/m2t/?project=xpand

	Architecture_Cover.pdf
	Architecture

