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Abstract. Web services run in complex computing infrastructures where aris-
ing events may affect the quality of the system. Thus, it is desirable for service
compositions to self-configure in order to deal with these events. Most research
implements cumbersome variability constructs at the language level to implement
dynamic service compositions. Also, research has focused on managing variabil-
ity at the composition schema level. Nevertheless, the adaptation of running com-
position instances is an open research field. In this paper, we propose a frame-
work that uses easy-to-understand models at runtime to: 1) dynamically evolve
versions of the composition schema pro-actively; and 2) carry out strategies to
dynamically adapt composition instances. Autonomic behavior is achieved by
our Model-based Reconfiguration Engine for Web Services (MoRE-WS), which
leverages models at runtime for decision-making. An evaluation demonstrates
that our approach has good performance for an increasing number of evolved
service operations.

1 Introduction

In nature, organisms adapt themselves to be more suitable totheir environment. As
organisms live in intricate, changing environments, software is executed in complex
and heterogeneous computing infrastructures in which a diversity of events may arise
(e.g. security threats and server failures). Therefore, itis desirable to translate the ideas
of self-adjustment in the natural world to software in orderto solve these situations.

A good example of systems that require adjusting themselvesare the ones based on
Web service compositions (or simply calledservice compositions). Web services run in
a context, which is any information that can be used to characterize their situation [14]
(e.g. their operating computing infrastructure). In an ideal scenario, Web service oper-
ations would do their job smoothly. However, several exceptional situations may arise
in the complex, heterogeneous, and changing contexts wherethey run. For example,
the response time of a Web service operation may have greatlyincreased or may have
become unavailable. Therefore, it is appropriate to count on dynamic service composi-
tionsthat manage themselves at runtime to keep service-level agreements (SLAs), offer
extra functionality depending on the deployment context, protect the system, or make
the system more usable.



Most approaches for dynamic service compositions have tended to implement dy-
namic behavior on the language level [13,15,6], which can becomplex and time-consu-
ming as the system grows. In addition, the trend has been on the reactive dynamic evo-
lution of the composition schema (e.g. described in WS-BPEL) to solve situations that
arise in the context [4,16]. We definedynamic evolutionas the modification at runtime
of the composition schema, which specifies a business process. As expected, reactive
dynamic evolutions may lead to unwanted consequences sincethey call for changes
in the service composition when the problem is already evident to users or systems.
Furthermore, several versions of the composition schema may be running at the same
time because of unfinished composition instances (hereafter, instances) attached to old
schemes. However, related work lacks mechanisms to dynamically evolve specific com-
position schema versions [13,15,6,4,16].

Despite the research trending on dynamic evolutions, we argue that it is also nec-
essary to count on mechanisms for the dynamic adaptation of instances. We define
dynamic adaptationas the migration of instances to a new version of the composition
schema. However, the instance migration process is an open and complex research field
[23]. For example, it is expensive to abort all ongoing instances that depend on a com-
position schema and replay them according to a new version ofthe schema.

In this paper, we propose a framework to support dynamic service compositions
using easy-to-understand and semantically rich models at runtime.Models at runtime
can be defined as causally connected self-representations of the associated system that
emphasize the structure, behavior, or goals of the system from a problem space perspec-
tive [8]. The contribution of our model-driven framework istwofold. First, our frame-
work generates actions to guide the proactive dynamic evolution of composition schema
versions. Specifically, we propose that service compositions be abstracted as a set of
features(logical units of behaviors that are specified by a set of functional and non-
functional requirements [9]) in variability models. Thus, evolution actions are described
in terms of the activation or deactivation of features incausally connectedvariability
models (i.e., changes in these models cause the service composition to evolve and vice
versa). Furthermore, the a priori analysis of variability models avoids problems before
they affect the system. Second, our framework employs strategies for the dynamic adap-
tation of instances. These strategies decide whether to migrate to a new version of the
composition schema or keep running on an old version of the schema. The analysis for
dynamic adaptations is carried out on abstract and technology-independent represen-
tations of composition schema versions. The proposed framework is supported by our
Model-based Reconfiguration Engine for Web Services (MoRE-WS), which generates
abstract evolution and adaptation actions using models at runtime. Then, MoRE-WS
uses these actions to create and deploy WS-BPEL code.

The remainder of this paper is structured as follows: Section 2 describes a moti-
vating scenario. Section 3 presents an overview of our framework. Section 4 describes
the models that support dynamic service compositions. Section 5 describes our model-
driven approach for the dynamic evolution of composition schemes. Section 6 describes
model-driven strategies for the dynamic adaptation of instances. Section 7 introduces
a running prototype. Section 8 presents the evaluation of our framework. Section 9
presents related work, and Section 10 presents conclusionsand future work.



2 Motivating Scenario

The BPMN model in Figure 1 represents a composition schema that supports online
book shopping at Orange Country Bookstore. BPMN tasks express Web service opera-
tions (e.g. UPS Shipping service), and BPMN subprocesses express composite service
operations (e.g. Barnes & Noble Books composite service).
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Fig. 1. A BPMN model that represents a composite service for online book shopping

The business process starts when a customer looks for a book on the website of
Orange Country Bookstore. The searching operation is provided by the Search Book
Web service, which is part of the Barnes & Noble Books composite service. If the book
is found, then the book information is returned to the customer by the Show Book Info
Web service while at the same time the information for other related books is listed by
the Show Related Titles Web service. If the book is not found,the customer must refine
the search for the book. In the next step, the customer adds books into the shopping
cart through the Barnes & Noble Shopping Cart Web service. When the customer is
ready to checkout, he or she has to be authenticated by the Google Authentication Web
service. Then, the in-house Payment Calculator Web servicecalculates the total amount
to be paid. The payment is done through the Bank of America Credit Card Payment
Web service. Finally, if the credit card information is valid, the in-house E-mail Invoice
Web service sends an e-mail to the customer with the invoice while the UPS Shipping
Web service is invoked to deliver the book. Otherwise, the process terminates.

As a business differentiator, Orange Country Bookstore requires that its online book
shopping process be available 24/7. However, several context events may arise in a
heterogeneous computing infrastructure, e.g. any third-party Web service operation may
fail or perform below required SLAs. Also, since the servicecomposition supports a
critical business process, it is impossible to shut down thesystem with all the running
instances to implement any necessary changes. Moreover, itis desirable to count on
mechanisms to support dynamic behavior that are easy to understand by non-technical
stakeholders to accelerate time-to-market and facilitatemaintenance.

The aforementioned situations help us to identify the following challengesfor dy-
namic service compositions: 1) reactive dynamic evolutions of the composition schema
are triggered when problematic context situations have already affected the executing
service composition. A better strategy is to proactively detect and solve problematic



situations in the context [5]; 2) different versions of the composition schema may be
running concurrently. Therefore, it is necessary to count on mechanisms to dynami-
cally evolve specific versions that may be affected by a context event; 3) instance mi-
grations to a new version of the composition schema have to bedone in a controlled
way in order to avoid unexpected results; and 4) implementing the actions to carry out
dynamic evolutions and dynamic adaptations on the languagelevel can be complex and
time-consuming. Expressing these actions as easy-to-understand abstractions can facil-
itate the development and maintenance of the logic behind dynamic management. Also,
these actions should be autogenerated at runtime to reduce human workload.

3 Model-Driven Framework for Dynamic Service Compositions

Web services represent the most common realization of Service-Oriented Architecture
(SOA) [18], making the development of inter-operable Internet applications possible.
However, Web services run in heterogeneous and complex contexts. Thus, it is desirable
to count on dynamic service compositions that can deal with context changes at runtime.

In order to support dynamic service compositions and solve the challenges pre-
sented in Section 2, we introduce the following strategy. First, we describe mecha-
nisms to express where and how service compositions and their running instances can
be adjusted to deal with arising context events. These mechanisms must be as easy to
understand and as highly abstract as possible. Afterwards,we provide a supporting in-
frastructure that detects context changes and determines what to do with composition
schema versions and instances. Evolution and adaptation actions are autogenerated at
runtime by processing the knowledge in models at runtime. Model transformations are
carried out to generate WS-BPEL code, which is hot-deployedin a WS-BPEL engine.

To make the aforementioned strategy a reality, we propose a framework that uses
models at runtime to support dynamic service compositions.The underpinnings of our
framework are as follows: 1) support for the dynamic evolution of composition schema
versions that may be affected by context events; 2) use of highly-abstractcontext condi-
tionsto check for events arising in the current context. If a context condition is accom-
plished, then service composition adjustments are triggered. In other words, a context
condition works as an SLA; 3) autogeneration ofevolution policiesthat state the ac-
tions required to evolve composition schema versions to better fit the context; 4) use
of dynamic adaptation strategies to guide the migration of running instances to new
composition schema versions; and 5) self-adjustment of service compositions without
having to restart the system. MoRE-WS is the most important component in the frame-
work because it controls model-driven dynamic evolutions and adaptations to deal with
arising context events. MoRE-WS is an extension of our previous work called MoRE
[12]. MORE translates context changes in the smart-home domain intochanges in the
activation and deactivation of features at runtime.

The framework is divided into two parts, namely dynamic evolution and dynamic
adaptation (see Figure 2). In the dynamic evolution part, the Context Monitor period-
ically gets information from the context. Then, MoRE-WS updates thecontext model
with the collected information in order to reason about the current context situation.
If a context condition has been accomplished, then MoRE-WS activates or deactivates
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Fig. 2. A model-driven framework to support dynamic service compositions

features in variability model configurations. Avariability modeldescribes thevariants
(representations of variability objects within domain artifacts [21]) in which a compo-
sition schema can change. Since several versions of the composition schema may be
running at the same time, there is a variability model configuration for each composi-
tion schema version. The changes that are carried out in variability model configurations
are reflected incomposition modelsthat abstract the underlying composition schemes.
Afterwards, composition models are used to generate and hotdeploy WS-BPEL code
that orchestrates service operations. In the dynamic adaptation part, MoRE-WS uses a
set of strategies that are based on information in composition models to decide whether
or not to migrate instances to new composition schema versions. Section 4 presents
the models that are used in our framework. Then, Section 5 andSection 6 describe the
dynamic evolution and dynamic adaptation parts.

4 Models that Support Dynamic Service Compositions

The models that are going to be leveraged during execution tosupport dynamic service
compositions are created at design time (see Figure 3). Besides creating the composition
model to represent the service composition (e.g. with a BPMNdiagram, a Petri net, or a
UML Activity diagram), we propose the creation of a set of additional models to support
dynamic behavior. First, we propose the variability model to describe the variants in
which a composition schema can evolve. These variants may provide better quality
of service (QoS), offer new services that did not make sense in the previous context,
or discard some other services [19]. In order to replicate the changes that are carried
out in the variability model in the composition model, whichrepresents the service
composition, it is necessary to count on a weaving model. Theweaving model works
as abridgebetween the elements in the composition and variability models. Finally, we
propose a context model for the formal analysis of context information.
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Fig. 3. Models that support dynamic service compositions

4.1 Composition Model

The composition model represents the service composition (such as the one in Figure
1). At runtime, this model is adjusted according to context changes. BPMN was chosen
to represent the elements in a service composition for the following reasons: 1) BPMN
models are suitable for representing sequences and dependencies between Web service
operations; and 2) the use of languages such as WS-BPEL couldbe more difficult to
understand by business analysts and managers who are involved in the development
process and prefer to visualize the service composition in aflowchart format.

4.2 Variability Model

Even when the composition model can be used to represent the underlying service
composition, it does not represent the variability that a service composition may have.
Specifically, it is necessary to realize the set of variants that can be part of a service
composition at a particular moment. Thus, we propose a variability model to describe
the service composition variability [1].

Feature modeling was chosen for variability modeling and analysis because it can
represent variants in a very concise taxonomic form, and it has good tool support for
variability reasoning [7]. Figure 4 shows the feature modelfor our case study. Features
represent the functionalities of the Web-service-based system in a coarse-grained fash-
ion [1,2]. Therefore, adjustments in the service composition can be described in terms
of the activation or deactivation of features in the variability model.Variation pointsare
used to express decisions leading to different variants at runtime (e.g. the UPS Ship-
ping, FedEX Express, and DHL Delivery features are variantsthat can accomplish the
Shipment variation point). Since only one variant can be chosen at a time in a partic-
ular variation point, there is analternative relationshipbetween a variation point and
its variants. Each variant is denoted with anoptional feature because it can be added
or removed according to specific needs. In line with customerrequirements, a particu-
lar variant in a variation point will have a higher possibility of being chosen than the
other variants at runtime. As a result, we propose that systems analysts assign a specific
priority to each variant.

In order to give semantics to the variability model, a connection between the highly
abstract elements in the variability model and the low-level service operations is neces-
sary. Since the composition model represents the operations in the service composition
at any moment, the definition of abridgebetween the elements in the variability model
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Fig. 4. Variability model for the online-book-shopping case study

and the elements in the composition model could be used to support dynamic adjust-
ments in the underlying service composition. In order to define this bridge, we propose
the creation of a weaving model [1,2]. The weaving model contains a set of links. Each
link has the following endpoints: the first endpoint refers to model elements that make
up a composition model. In our case study, these elements areBPMN tasks and sub-
processes, which represent Web service and composite service operations, respectively;
the second endpoint refers to features in the variability model.

4.3 Context Model

In order to express the context in a way that supports formal reasoning of its current
status and possible arising situations, we propose an ontology-based context model that
leverages Semantic Web technology [1]. The context model provides a strong semantic
vocabulary for the representation of context knowledge andfor describing specific sit-
uations in the context. The main benefit of the context model is to enable the analysis
of the domain knowledge using first-order logic. Specifically, we make use of the Web
Ontology Language1 (OWL) to analyze the context information that is captured bythe
Context Monitor.

Figure 5 shows a fragment of the context model for our case study. Individuals have
the following datatype properties:hasAddressindicates the address of the service op-
eration;isAvailableindicates whether or not the service operation is currentlyavailable
(it is a Boolean value);hasResponseTimeindicates the current response time in mil-
liseconds to have access to a particular Web service operation; andhasExecutionTime
indicates the current execution time in milliseconds that aWeb service operation takes
to execute a job (response time plus execution time).

At design time, systems analysts extract context conditions from the context model
as Boolean expressions. Each context condition is represented as a triple in the form of
(subject, predicate, object)[1]. Two context conditions in our case study are the follow-
ing: 1) Barnes&NobleBooksUnavailable = (Barnes&NobleBooks, isAvailable, false),

1 http://www.w3.org/TR/owl-ref/: World Wide Web Consortium (W3C).
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Fig. 5. A fragment of the context model for the online-book-shopping case study

which is triggered when theBarnes & Noble Bookscomposite service is currently un-
available; and 2)UPSShippingHiRespTime= (UPSShipping, hasResponseTime, >2,000
ms), which is triggered when the current response time of theUPSShippingWeb service
operation is greater than 2 seconds.

5 Dynamic Evolution

When dealing with arising context events, it is unthinkableto carry out manual ad-
justments in composition schema versions because of the inherent intricacy of service
compositions and desired prompt responses. Furthermore, critical systems cannot be
stopped in order to carry out the necessary changes. Therefore, an autonomic approach
is a must for service compositions that have to adjust to the context.

In this section, we describe models at runtime as a means to proactively autogen-
erate evolution policies with simple and semantically richinstructions. To this end,
the discovery and reasoning of any problematic context event is carried out in abstract
models at runtime before the problem is evident to users or other systems. Specifi-
cally, evolution policiessupport the evolution of multiple composition schema versions
by activating and deactivating features in variability model configurations according to
context conditions. In order to reflect the changes in variability model configurations on
the running service composition versions, we propose defining reconfiguration plans.
These plans contain highly abstract reconfiguration actions to evolve composition mod-
els that represent the underlying composition schema versions. Autonomic mechanisms
are defined to transform evolved composition models into WS-BPEL code. The gener-
ated WS-BPEL code is hot-deployed in the Execution Engine.

5.1 Generating Evolution Policies

Instead of manually creating evolution policies, which is atime-consuming process, our
framework makes use of semantically rich models to autogenerate them. The model-
driven generation of evolution policies has the following benefits: 1) project resources
can be saved because the models created at design time are reused at runtime; 2) tech-
nology bridges are avoided between design and execution artifacts. Therefore, the effort
is reduced because there is no need to build such bridges; 3) models are independent of
the underlying technologies. Therefore, they can describeautonomic behavior through
abstract and easy-to-understand concepts; and 4) models can hide the complexity of the
evolution space, thus facilitating the management of autonomic behavior.



In our previous research [1], we showed how MoRE-WS queries the context in-
formation that is collected by the Context Monitor and updates the context model ac-
cordingly. With this information, MoRE-WS determines whether or not any context
condition has been accomplished. Since a given context condition can trigger the ac-
tivation or deactivation of several features at runtime, wepropose using theresolution
concept to represent the set of changes in the variability model triggered by a context
condition. Thus, resolutions are the evolution policies that express the transitions among
different configurations of a service composition in terms of activation or deactivation
of features. Basically, a resolution (R) can be expressed as a list of pairs (F, S), where
each pair is made up of a feature (F) in the variability model (VM) and the state (S) of
the feature. Each resolution is associated to a context condition (C).

RC = {(F, S) |F ǫ [VM ] ∧ S ǫ {Active, Inactive}} (1)

The autogeneration of resolutions during execution is possible with the following
steps: 1) MoRE-WS selects the problematic service operation that has launched the
context condition (e.g. an unavailable service operation or a service operation with an
execution time that violates an SLA); 2) MoRE-WS looks for the service composition
versions that may be potentially affected by the problematic service operation; and 3)
MoRE-WS tries to generate a resolution for each service composition version that may
be negatively affected by the problematic service operation.

Models at runtime are used in the aforementioned steps to generate resolutions as
follows. In the first step, MoRE-WS discovers the problematic service operation by ob-
serving the arising context condition, which is expressed in terms of elements in the
context model. In the second step, since composition modelsabstract service composi-
tions, MoRE-WS looks for all the composition model versionsthat define an abstraction
of the problematic service operation (e.g. in terms of a BPMNactivity). This is key in-
formation because we are interested in evolving the servicecomposition versions that
may be affected by particular service operations. In the last step, since resolutions are
expressed in terms of features, MoRE-WS carries out the following steps to activate
and deactivate features in variability model configurations:

1. MoRE-WS runs through the weaving model to find the mapping between the prob-
lematic service operation (e.g. a BPMN activity) and a feature in a variability model
configuration.

2. MoRE-WS looks for variants in a variability model configuration to fix the feature
that represents the problematic service operation. If thisfeature is a leaf feature,
then MoRE-WS deactivates it and activates the variant that has the highest priority
in the variation point on which the leaf feature depends. If the feature that represents
the problematic service operation is an interior node (which maps to a composite
service [2]), MoRE-WS deactivates its subfeatures and activates a variant together
with its subfeatures.

3. If a variant has a “requires” relationship with a feature or interior node, then MoRE-
WS also activates or deactivates the required feature or interior node.

4. Finally, resolutions are not generated if the feature to be adjusted is mandatory (i.e.,
there are no variants to be used during the evolution process).



For example, theBarnes&NobleBooksUnavailablecontext condition has been trig-
gered. In this case, MoRE-WS uses the strategy above to generate a resolution for the
initial configuration of the case study (in Figure 1). Figure6 depicts the result after
applying this resolution. Amazon Books and its required functionalities are activated.
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Fig. 6. Resolution application example. Highlighted features areactivated

5.2 Reflecting Variability Model Changes in Composition Schemes

The changes that are carried out in variability model configurations have to be reflected
into the underlying composition schema versions. Instead of programming complex
instructions to modify composition schemes, we propose first carrying out evolutions at
the composition model level. Afterwards, evolved composition models will be used to
generate WS-BPEL code that orchestrates service operations.

We propose the creation ofreconfiguration plans to translate the changes in evolved
variability model configurations into composition model versions. A reconfiguration
plan contains a set of reconfiguration actions to modify a particular composition model
version. Reconfiguration actions are stated ascomposition model increments(CM△)
andcomposition model decrements(CM∇). These operations take a resolution as input,
and they calculate the modifications to a composition model version by adding (CM△)
or removing (CM∇) BPMN elements.

Instead of manually coding reconfiguration plans at design time (which can be time-
consuming and error prone), we propose to autogenerate themat runtime using the
knowledge in models at runtime. To this end, MoRE-WS queriesthe weaving model
to find the mappings between the features that are expressed in resolutions and their
related BPMN elements. In this way, a given service operation, which is represented
by a BPMN element in a composition model version, will be invoked in an evolved



service composition if and only if its related feature in a resolution isactive. That is, a
composition model is evolved through the activation or deactivation of features.

For example, givenRBarnes&NobleBooksUnavailable for the initial configuration in
Figure 1, the result is the following reconfiguration plan:CM∇ = {Barnes & Noble
Books, Barnes & Noble Shopping Cart}andCM△ = {Amazon Books, Related Titles,
Amazon Shopping Cart}. Figure 7 shows the evolved composition model.
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Fig. 7.Evolved composition model for the case study

5.3 Generating WS-BPEL Code and Hot Deployment

In order to realize our approach in an industrial environment, it is necessary to trans-
form the evolved composition models into WS-BPEL code and hot deploy this code
on a WS-BPEL engine. To this end, MoRE-WS converts composition model versions
through model-to-text transformations into WS-BPEL files,which support service or-
chestrations. In order to translate a BPMN composition model into WS-BPEL code,
MoRE-WS makes use of the Babel project2. Nevertheless, although the Babel tool uses
model-to-text transformations to generate a WS-BPEL document from a BPMN model,
the generated WS-BPEL document is not complete. For example, it lacks information
about the partner links of services participating in the process and the variables used in
the process. Thus, MoRE-WS injects pieces of XML code into particular points in the
initial WS-BPEL file in order to obtain ready-to-run WS-BPELcode. Then, MoRE-WS
puts the complete WS-BPEL file into the deployment directory. We have implemented
a versioning strategy for the deployment directory to prevent the EXECUTION ENGINE

from deleting all the running instances when a new composition schema is deployed.
To this end, a new deployment directory with an increasing version number is deployed
with every dynamic evolution. New instances run according to the latest version.

6 Dynamic Adaptation

The dynamic evolution of composition schema versions is oneside of the coin. The
other side is the dynamic adaptation of instances. However,this is not an easy task
since each instance may be running a different operation at the same time. For exam-
ple, some instances are almost finishing their execution while others are just starting.

2 http://www.bpm.scitech.qut.edu.au/research/projects/oldprojects/babel/tools/: Babel tools.



Instead of migrating all instances to apply changes, we propose a set of strategies to
decide whether or not instances should migrate to new versions of the composition
schema. This is an important aspect because uncontrolled instance migration will lead
to inconsistencies or errors [24].

The applicability of the dynamic adaptation strategies is described in a set of in-
stances in our case study. The left-hand side of Figure 8 depicts the first version of a
composition model (according to Figure 1) and four instances that run conforming to
this model. The right-hand side of the figure shows the secondversion of the composi-
tion model after a dynamic evolution has been triggered to deal with theBarnes&Noble-
BooksUnavailablecontext condition. Each composition model version has a setof ac-
tivities that have evolved (EvolvedAc), and running instances have the following sets
of activities: 1) a set of already executed activities (ExecutedAc); 2) a current running
activity or event – e.g. a start or end event (CurrentAcEv); and 3) a set of coming
activities that have not yet been executed in the workflow (ComingAc).
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Fig. 8. Applicability of the strategies for dynamic adaptation

The migration of instances from an old composition schema toa new one is carried
out when it is safe to do so. That is, only those instances are migrated which are com-
pliant with the old version of the composition schema [24]. Specifically, an instanceI
is compliantwith a composition schemaS, if the current execution history ofI can be
created based onS[22]. All other instances remain running according to the old version
of the composition schema. In our case, the execution history of everyI is managed at
the composition model level (it keeps the updatedCurrentAcEv information).

We propose migrating instances in two cases. The first case isif all the activi-
ties in the instance have not yet been executed (i.e.,ExecutedAc = Ø). Therefore,
adaptations will be done inComingAc and will not affect the previous results gen-
erated byExecutedAc (seeI1). The second case is ifCurrentAcEv has evolved at
the composition model and adaptations do not have to be carried out inExecutedAc

(i.e.,ExecutedAc
⋂

EvolvedAc = Ø) – seeI2. Therefore, this strategy prevents the



adaptation ofExecutedAc to avoid inconsistencies inCurrentAcEv andComingAc.
During migrations, MoRE-WS moves the instances that dependon evolved composi-
tion schema versions from an active state to a passive state to avoid undesirable ef-
fects. An instance is kept in the passive state until a strategy has been applied on it (i.e.,
when MoRE-WS has decided whether or not the instance can be migrated). Afterwards,
MoRE-WS reactivates passive instances.

On the other hand, instances do not migrate when it is unsafe or unnecessary to
do so. Specifically, an instance keeps running on the old version of the composition
schema in two cases. The first case is ifCurrentAcEv has evolved and any other ac-
tivity in ExecutedAc has also evolved (i.e.,ExecutedAc

⋂
EvolvedAc 6= Ø). For

example,I3 is not migrated since the Barnes & Noble Books service operation (which
had to evolve) has already been executed. The dynamic adaptation of the Barnes and
Noble Shopping Cart service operation may cause an incongruence with the Barnes &
Noble Books service operation (they cannot coexist). The second case is if all the activi-
ties that could be adapted have already been executed (ExecutedAc

⋂
EvolvedAc =

EvolvedAc). In this case, it is better to let the instance finish its execution instead of
spending resources on unnecessary migrations (seeI4).

7 Prototype Implementation

A prototype system validates the feasibility of our approach. The composition model
and the variability model are specified in the XML Metadata Interchange (XMI) for-
mat. They are processed by the software infrastructure provided in the Eclipse Mod-
eling Framework (EMF)3 to specify and execute queries against them at runtime. The
composition model conforms to the BPMN metamodel, and the variability model con-
forms to the MOSKitt4SPL4 metamodel. The weaving model is created in the ATLAS
Model Weaver5 tool. Context conditions are specified as SPARQL Protocol and RDF
Query Language6 (SPARQL) queries to the ontology in the context model [1]. Also,
MoRE-WS uses the EMF Model Query (EMFMQ)7 to activate or deactivate features
in variability model versions during execution. SALMon [3]implements the Context
Monitor because its components are mostly technology-independent and they act as
services, making its architecture customizable for our purpose. Apache ODE8 was cho-
sen as the Execution Engine because it is compliant with WS-BPEL and offers ma-
ture hot-deployment support. Instead of extending the functionality of the engine, our
approach does not require changes to the engine. The information about instances is
retrieved by the BPEL Management API of Apache ODE and updated by MoRE-WS
in the composition model versions. Figure 9 depicts the running prototype when the
Barnes&NobleBooksUnavailablecontext condition has been triggered. The composi-
tion model shows the activities that have already been executed and the current running

3 http://www.eclipse.org/modeling/emf/: EMF.
4 http://www.pros.upv.es/m4spl: MOSKitt4SPL.
5 http://www.eclipse.org/gmt/amw/: ATLAS Model Weaver.
6 http://www.w3.org/TR/rdf-sparql-query/: SPARQL.
7 http://www.eclipse.org/modeling/emf/: EMF Model Query.
8 http://ode.apache.org/: Apache ODE.



activity in an instance. The figure also shows a variability model configuration, a con-
sole with evolution and adaptation actions, and the models that are used at runtime.
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Fig. 9.Running prototype when facing theBarnes&NobleBooksUnavailablecontext condition

8 Evaluation

In this section, we describe the evaluation results of our framework. Specifically, we
evaluate the following two aspects: 1) the dynamic evolution performance when the
number of evolved service operations increases in service compositions of a growing
size; and 2) the dynamic adaptation performance for an increasing number of evolved
service operations. Since evolutions and adaptations are carried out at runtime, the per-
formance of model-driven operations is a key aspect to be evaluated. Finally, we provide
a brief discussion of the realizability of our approach during the development process.

The experiments were carried out on a PC with an Intel Core 2 Duo 2.0 GHz pro-
cessor and 4 GB RAM with Ubuntu version 10.04 and Kernel Linuxversion 2.6.32-36-
generic. The Web services ran on Apache Axis29 version 1.6.1, which was deployed as
a WAR distribution on Apache Tomcat10 version 7.0.8. The hot deployment was car-
ried out by MoRE-WS on Apache ODE version 1.3.5, which was deployed on a second
instance of Apache Tomcat. SALMon and MoRE-WS ran on the samedevice. Six com-
position schemes of increasing size were used in the experiments (see Table 1)11. The
objective was to evolve the first version of each one of these composition schemes into
a second version. The experiments were carried out with eighty instances running on
each composition schema.

9 http://axis.apache.org/axis2/java/core/: Apache Axis2.
10 http://tomcat.apache.org/: Apache Tomcat.
11 CS1 implements our case study when the theBarnes&NobleBooksUnavailablecontext condi-

tion has been triggered.



Composition Schema CS1 CS2 CS3 CS4 CS5 CS6

Service Operations 7 16 33 50 68 85

Evolved Service Operation2 5 8 12 17 25

Table 1.Composition schema configurations that were used in the experiments

Figure 10 depicts the results of the experiments. Specifically, section a presents
the execution time in milliseconds during dynamic evolutions. The results are divided
into the four main tasks, which were carried out during dynamic evolutions. Thefind a
context condition, generate a resolution, andgenerate a reconfiguration planoperations
were fast, even for large composition schemes. The execution time of thefind a context
condition and generate a reconfiguration planoperations remained stable while the
generate a resolutionoperation had an exponential growth. Thegenerate WS-BPEL
& hot deploymentoperation took the longest time. The most expensive task in this
operation was the transformation from the evolved composition model to the initial
WS-BPEL file using Babel, which took around 95% of the time in all cases. Therefore,
in order to reduce the impact on the performance of instances, MoRE-WS starts the
model-driven analysis of dynamic adaptation strategies before triggering WS-BPEL
code generation and hot deployment. As a result, instances do not have to be kept in the
passive state longer than necessary.
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Fig. 10.Execution time for a) dynamic evolutions and b) dynamic adaptation strategies

Section b in Figure 10 presents the average execution times in milliseconds taken in
the dynamic adaptation of the instances that run onCS1 to CS6. The strategies that re-
quired migrations took the longest time since instances hadto be adapted. Between the



two strategies that do not require migrations, theno migrate if all activities have been
executedstrategy took a longer time since MoRE-WS had to be sure that all evolved
activities had previously been executed. The execution time for dynamic adaptations
grew exponentially as service operations and evolved service operations increase.

The amount of effort required by our approach during the development process was
minimal. At design time, the creation of the supporting models was straightforward
because it was supported by enterprise modeling tools. Also, no extra work was required
to carry out the model-driven operations at runtime becauseMoRE-WS automatizes the
dynamic adjustments. Also, since our approach is transparent to the Execution Engine,
the engine does not have to be modified for hot deployment.

In summary, our solution provided a feasible performance even for large service
compositions with an increasing number of evolved service operations. Specifically,
the generation of proactive dynamic evolution actions werecarried out without exces-
sively affecting the execution time. The generation of WS-BPEL code from composi-
tion model versions took the longest execution time. However, this situation was mit-
igated by executing the dynamic adaptation strategies in parallel with the generation
of WS-BPEL code and hot deployment. Also, the strategies forthe dynamic adapta-
tion of instances had good execution times in all cases. Lastbut not least, our approach
required a minimum effort during the development process.

9 Related Work

Research works related to dynamic service compositions have tended to implement
variability constructs at the language level. For example,SCENE [13] extends WS-
BPEL with Event Condition Action (ECA) rules that define consequences for condi-
tions to guide the execution of binding and rebinding self-reconfiguration operations.
VXBPEL [15] is an adaptation of WS-BPEL that allows variation points, variants, and
configurations to be defined for a process in a service-centric system. In [6], Web ser-
vice monitoring directives and recovery strategies are expressed with two languages.
We argue that implementing and managing dynamic evolutionsat the language level is
complex, especially in large systems. Moreover, the trend has been on reactive dynamic
evolutions [4,16], which is time-consuming and can lead to unwanted results.

We highlight relevant related approaches that use models atruntime to support the
dynamic evolution of service compositions. In [10], Bosloper et al. introduce a tool
that offers components for monitoring and reconfiguring Webservice-centric systems.
However, the supporting models and their related reconfiguration mechanisms are not
presented in a detailed way. In [11], Calinescu et al. present a tool-supported frame-
work for the QoS management of self-adaptive, service-based systems. It combines
formal specification of QoS requirements, model-based QoS evaluation, monitoring
and parameter adaptation of the QoS models, and planning andexecution of system
adaptation. QOSMOS is focused on the translation of high-level QoS requirements into
probabilistic temporal formulas and in the formalization of these QoS requirements. In
[17], Menasce et al. present a model-driven framework that provides runtime evolution
of service compositions in response to changing operating conditions. Dynamic evo-
lutions are carried out through patterns, which are not autogenerated at runtime. Thus,



a system restart is required to modify them. Moreover, it is not clear how the service
coordination logic can be deployed in a WS-BPEL engine. In [20], Morin et al. propose
combining model-driven and aspect-oriented techniques tosupport runtime variability
from requirements to execution. However, this solution is not focused on Web services.
In [5], Aschoff et al. describe an approach for the proactiveevolution of service com-
positions using anexecution model. However, to the best of our knowledge, the afore-
mentioned approaches do not handle the dynamic evolution ofmultiple versions of the
composition schema. Moreover, they do not describe the mechanisms for the dynamic
adaptation of instances. Therefore, it is unclear how instance migrations are done.

The approaches that are presented above make evident the trend towards implement-
ing reactive dynamic evolutions of service compositions atthe language level, which
can be complex and time-consuming. Model-driven approaches have made a first step
in managing dynamic service compositions at a higher abstraction level. However, they
lack support for the dynamic evolution of several versions of the composition schema
and for the dynamic adaptation of instances. Moreover, mostmodel-driven works pro-
pose reactive solutions for self-adjusting service compositions.

10 Conclusions and Future Work

In this paper, we have presented a framework that is based on easy-to-understand mod-
els at runtime to support the proactive dynamic evolution ofcomposition schema ver-
sions, and guide the dynamic adaptation of running instances. Specifically, we focus on
three aspects of dynamic evolution: the generation of evolution policies, the generation
of reconfiguration plans, and the generation of WS-BPEL codeand hot deployment.
Dynamic adaptations are possible through a set of model-driven strategies. Autonomic
behavior is achieved by a prototype based on MoRE-WS. An evaluation demonstrates
the feasibility of our approach. As future work, we will lookfor alternatives for the
transformation from BPMN composition models to WS-BPEL code to reach better ex-
ecution times. One possible solution is to connect reusablecode fragments to features.
At runtime, these fragments can be added or removed accordingly.
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