UNIVERSIDAD u
POLITECNICA PRRnO E
DE VALENCIA

Informe Técnico / Technical Report

DOONO0U
0101007107100 U
" 010100100 U
DONONoDo

Ref. #: ProS-TR-2012-05

Title: Towards Dynamic Service Compositions with Models at Runtime

Author (s): German H. Alférez and Vicente Pelechano

Corresponding | harveyalferez@um.edu.mx

author (s): pele@dsic.upv.es

Document version number: | 1.0 | Final version: | Yes | Pages: | 18

Release date: November 2012

Key words: Service Compositions, Models at Runtime, Dynamic Evolution of
Composition Schemes, Dynamic Adaptation of Composition Instances

Universidad Politécnica de Valencia - Camino de Vera s/n - Edificio 1F - 46022 Valencia Spain -

T. +34 96 387 70 07 Ext. 83530 - M. + 34 619 543 623 - F. +34 96 387 73 59 - info@pros.upv.es - Www.pros.upv.es

mailto:harveyalferez@um.edu.mx
mailto:pele@dsic.upv.es

Towards Dynamic Service Compositions with Models at
Runtime

German H. Alférezand Vicente Pelechafo

! Facultad de Ingenieria y Tecnologia, Universidad de Moaotetuos,
Apartado 16-5, Montemorelos N.L., 67500, Mexico
har veyal f erez@m edu. nx
2 Centro de Investigacion en Métodos de Produccion de Sat(RmsS),
Universitat Politecnica de Valéncia, Cami de Vera s/n, H226 Spain
pel e@lsi c. upv. es

Abstract. Web services run in complex computing infrastructures wleaais-
ing events may affect the quality of the system. Thus, it sirdéle for service
compositions to self-configure in order to deal with thesengés. Most research
implements cumbersome variability constructs at the lagguevel to implement
dynamic service compositions. Also, research has focusedamaging variabil-
ity at the composition schema level. Nevertheless, thetatlap of running com-
position instances is an open research field. In this papeprapose a frame-
work that uses easy-to-understand models at runtime toyrigrdically evolve
versions of the composition schema pro-actively; and 2)ycant strategies to
dynamically adapt composition instances. Autonomic biinaig achieved by
our Model-based Reconfiguration Engine for Web ServicesREHWVS), which
leverages models at runtime for decision-making. An evanademonstrates
that our approach has good performance for an increasindewuof evolved
service operations.

1 Introduction

In nature, organisms adapt themselves to be more suitaliteeboenvironment. As
organisms live in intricate, changing environments, saffwis executed in complex
and heterogeneous computing infrastructures in which ersiiy of events may arise
(e.g. security threats and server failures). Therefoie desirable to translate the ideas
of self-adjustment in the natural world to software in orttesolve these situations.

A good example of systems that require adjusting themseahesthe ones based on
Web service compositions (or simply callservice compositiofsWeb services runin
acontext which is any information that can be used to characteriei Hituation [14]
(e.g. their operating computing infrastructure). In araidseenario, Web service oper-
ations would do their job smoothly. However, several exiomatl situations may arise
in the complex, heterogeneous, and changing contexts vheyerun. For example,
the response time of a Web service operation may have giieatiyased or may have
become unavailable. Therefore, it is appropriate to conrtymamic service composi-
tionsthat manage themselves at runtime to keep service-leve¢agnts (SLAS), offer
extra functionality depending on the deployment contesdtgrt the system, or make
the system more usable.

Most approaches for dynamic service compositions havestttalimplement dy-
namic behavior on the language level [13,15,6], which cacdmeplex and time-consu-
ming as the system grows. In addition, the trend has beeneore#ttive dynamic evo-
lution of the composition schema (e.g. described in WS-BRRlIsolve situations that
arise in the context [4,16]. We defimignamic evolutioras the modification at runtime
of the composition schemavhich specifies a business process. As expected, reactive
dynamic evolutions may lead to unwanted consequences 8iegecall for changes
in the service composition when the problem is already ewitie users or systems.
Furthermore, several versions of the compaosition schemab®aunning at the same
time because of unfinished composition instances (heremfs¢éance} attached to old
schemes. However, related work lacks mechanisms to dyadlynévolve specific com-
position schema versions [13,15,6,4,16].

Despite the research trending on dynamic evolutions, weestigat it is also nec-
essary to count on mechanisms for the dynamic adaptationstdrices. We define
dynamic adaptatioms the migration of instances to a new version of the comipasit
schema. However, the instance migration process is an opkcoenplex research field
[23]. For example, it is expensive to abort all ongoing ins&s that depend on a com-
position schema and replay them according to a new versitreafchema.

In this paper, we propose a framework to support dynamiciceimompositions
using easy-to-understand and semantically rich modelsrdinne.Models at runtime
can be defined as causally connected self-representafitims associated system that
emphasize the structure, behavior, or goals of the systamdrproblem space perspec-
tive [8]. The contribution of our model-driven frameworktigofold. First, our frame-
work generates actions to guide the proactive dynamic éeolof composition schema
versions. Specifically, we propose that service compasstlme abstracted as a set of
features(logical units of behaviors that are specified by a set of fional and non-
functional requirements [9]) in variability modeThus, evolution actions are described
in terms of the activation or deactivation of featurecausally connectedariability
models (i.e., changes in these models cause the serviceosdiap to evolve and vice
versa). Furthermore, the a priori analysis of variabilitydels avoids problems before
they affect the system. Second, our framework employssfied for the dynamic adap-
tation of instances. These strategies decide whether taateitp a new version of the
composition schema or keep running on an old version of thersa. The analysis for
dynamic adaptations is carried out on abstract and tecgpeétaependent represen-
tations of composition schema versions. The proposed frameis supported by our
Model-based Reconfiguration Engine for Web Services (MORE), which generates
abstract evolution and adaptation actions using modelsrdimne. Then, MORE-WS
uses these actions to create and deploy WS-BPEL code.

The remainder of this paper is structured as follows: Sac@aescribes a moti-
vating scenario. Section 3 presents an overview of our freorle Section 4 describes
the models that support dynamic service compositionsi@ebtdescribes our model-
driven approach for the dynamic evolution of compositidmesoes. Section 6 describes
model-driven strategies for the dynamic adaptation ofaimsg¢s. Section 7 introduces
a running prototype. Section 8 presents the evaluation offramework. Section 9
presents related work, and Section 10 presents conclusiahfuture work.

2 Motivating Scenario

The BPMN model in Figure 1 represents a composition schemiastipports online
book shopping at Orange Country Bookstore. BPMN tasks espieb service opera-
tions (e.g. UPS Shipping service), and BPMN subprocesggesx composite service
operations (e.g. Barnes & Noble Books composite service).

Fig. 1. ABPMN model that represents a composite service for onloaktshopping

The business process starts when a customer looks for a otieovebsite of
Orange Country Bookstore. The searching operation is geavby the Search Book
Web service, which is part of the Barnes & Noble Books compcasgrvice. If the book
is found, then the book information is returned to the custoby the Show Book Info
Web service while at the same time the information for otleéated books is listed by
the Show Related Titles Web service. If the book is not fotinel customer must refine
the search for the book. In the next step, the customer adalsskinto the shopping
cart through the Barnes & Noble Shopping Cart Web serviceemthe customer is
ready to checkout, he or she has to be authenticated by thgi&Aauothentication Web
service. Then, the in-house Payment Calculator Web seceicellates the total amount
to be paid. The payment is done through the Bank of AmericaiCtard Payment
Web service. Finally, if the credit card information is alihe in-house E-mail Invoice
Web service sends an e-mail to the customer with the involivthe UPS Shipping
Web service is invoked to deliver the book. Otherwise, tloepss terminates.

As a business differentiator, Orange Country Bookstoraireq that its online book
shopping process be available 24/7. However, several xibetents may arise in a
heterogeneous computing infrastructure, e.g. any thantlyyWeb service operation may
fail or perform below required SLAs. Also, since the servimenposition supports a
critical business process, it is impossible to shut dowrstrstem with all the running
instances to implement any necessary changes. Moreoveridsirable to count on
mechanisms to support dynamic behavior that are easy tastadd by non-technical
stakeholders to accelerate time-to-market and facilitetetenance.

The aforementioned situations help us to identify the feltm challengedor dy-
namic service compositions: 1) reactive dynamic evolgiofithe composition schema
are triggered when problematic context situations hawsadly affected the executing
service composition. A better strategy is to proactiveliedeand solve problematic

situations in the context [5]; 2) different versions of themposition schema may be
running concurrently. Therefore, it is necessary to countrechanisms to dynami-
cally evolve specific versions that may be affected by a cameent; 3) instance mi-
grations to a new version of the composition schema have tiobe in a controlled
way in order to avoid unexpected results; and 4) implemgritie actions to carry out
dynamic evolutions and dynamic adaptations on the langleagécan be complex and
time-consuming. Expressing these actions as easy-torstadd abstractions can facil-
itate the development and maintenance of the logic behindriyc management. Also,
these actions should be autogenerated at runtime to reducarhworkload.

3 Model-Driven Framework for Dynamic Service Compositions

Web services represent the most common realization of Se@riented Architecture
(SOA) [18], making the development of inter-operable In&trapplications possible.
However, Web services run in heterogeneous and complegxdsnt hus, it is desirable
to count on dynamic service compositions that can deal wititext changes at runtime.

In order to support dynamic service compositions and sdbeechallenges pre-
sented in Section 2, we introduce the following strategystFiwe describe mecha-
nisms to express where and how service compositions andrtingiing instances can
be adjusted to deal with arising context events. These nméxha must be as easy to
understand and as highly abstract as possible. Afterwasglgrovide a supporting in-
frastructure that detects context changes and determihaste do with composition
schema versions and instances. Evolution and adaptatimms@re autogenerated at
runtime by processing the knowledge in models at runtimed&itransformations are
carried out to generate WS-BPEL code, which is hot-deplayed/VVS-BPEL engine.

To make the aforementioned strategy a reality, we proposenacfvork that uses
models at runtime to support dynamic service compositidbhe.underpinnings of our
framework are as follows: 1) support for the dynamic eveolutf composition schema
versions that may be affected by context events; 2) use bhfxbstractontext condi-
tionsto check for events arising in the current context. If a ceintendition is accom-
plished, then service composition adjustments are tregydn other words, a context
condition works as an SLA; 3) autogenerationevblution policieghat state the ac-
tions required to evolve composition schema versions ttebét the context; 4) use
of dynamic adaptation strategies to guide the migrationuohing instances to new
composition schema versions; and 5) self-adjustment efceecompositions without
having to restart the system. MORE-WS is the most importamponent in the frame-
work because it controls model-driven dynamic evolutioms adaptations to deal with
arising context events. MORE-WS is an extension of our previwork called MoRE
[12]. MORE translates context changes in the smart-home domaiclioges in the
activation and deactivation of features at runtime.

The framework is divided into two parts, namely dynamic atioh and dynamic
adaptation (see Figure 2). In the dynamic evolution paet,Gbntext Monitor period-
ically gets information from the context. Then, MORE-WS afib thecontext model
with the collected information in order to reason about therent context situation.
If a context condition has been accomplished, then MoRE-¥Saies or deactivates

Variability
Model

Shas e

Variability Variability Variability
Model Model Model
Configuration 1 Configuration 2 J; (Configuration N,

K 7]

maps £

activates/deactivates features

Dynamic

¥ ¥) A/ !
irc on C . e on Evolution
(L Model 1 Model 2 Ji__ModelN
e -

i (ws-BPELN]

"ot deployment

reconfigures

generates o
Context
Model
queries | Context [lobserves
Monitor

adapts

Execution

C i [ition Composition CEI:‘?;;.SM
Schema 1 Schema 2 Schema N Pt
> A Level

EDEDEDED

context

Composition Dynamic

Instance "
] Adaptation

Fig. 2. A model-driven framework to support dynamic service conitimss

features in variability model configurations.\ariability modeldescribes theariants
(representations of variability objects within domairifardts [21]) in which a compo-
sition schema can change. Since several versions of theastigm schema may be
running at the same time, there is a variability model coméijan for each composi-
tion schema version. The changes that are carried out iahiity model configurations
are reflected itomposition modelghat abstract the underlying composition schemes.
Afterwards, composition models are used to generate andémoy WS-BPEL code
that orchestrates service operations. In the dynamic atlaptpart, MORE-WS uses a
set of strategies that are based on information in compaositiodels to decide whether
or not to migrate instances to new composition schema vessidection 4 presents
the models that are used in our framework. Then, Section Saation 6 describe the
dynamic evolution and dynamic adaptation parts.

4 Models that Support Dynamic Service Compositions

The models that are going to be leveraged during executisagport dynamic service
compositions are created at design time (see Figure 3)d8gsreating the composition
model to represent the service composition (e.g. with a BRiiélgram, a Petri net, or a
UML Activity diagram), we propose the creation of a set of diddal models to support
dynamic behavior. First, we propose the variability moaetiescribe the variants in
which a composition schema can evolve. These variants mayida better quality
of service (Qo0S), offer new services that did not make semsbd previous context,
or discard some other services [19]. In order to replicagecthanges that are carried
out in the variability model in the composition model, whidpresents the service
composition, it is necessary to count on a weaving model.Wéaving model works
as abridgebetween the elements in the composition and variabilityefedrinally, we
propose a context model for the formal analysis of contdrtrimation.

Context Model Composition Model Y
creates O Qg@ O —
Weaving Model

Y
Analyst) =
C t

Variability Model

X
53 CxJ
/ 0]

Fig. 3. Models that support dynamic service compositions

4.1 Composition Model

The composition model represents the service composisioch(as the one in Figure
1). At runtime, this model is adjusted according to conté&arges. BPMN was chosen
to represent the elements in a service composition for thafimg reasons: 1) BPMN
models are suitable for representing sequences and depaesibetween Web service
operations; and 2) the use of languages such as WS-BPEL beutabre difficult to
understand by business analysts and managers who areedviolthe development
process and prefer to visualize the service compositiorflovachart format.

4.2 Variability Model

Even when the composition model can be used to representnitierlving service
composition, it does not represent the variability thatr@ise composition may have.
Specifically, it is necessary to realize the set of varian#t tan be part of a service
composition at a particular moment. Thus, we propose ahiéitipmodel to describe
the service composition variability [1].

Feature modeling was chosen for variability modeling analysis because it can
represent variants in a very concise taxonomic form, anastdood tool support for
variability reasoning [7]. Figure 4 shows the feature mddebur case study. Features
represent the functionalities of the Web-service-basstksyin a coarse-grained fash-
ion [1,2]. Therefore, adjustments in the service compmsitian be described in terms
of the activation or deactivation of features in the vatigbmodel. Variation pointsare
used to express decisions leading to different variantsratme (e.g. the UPS Ship-
ping, FedEX Express, and DHL Delivery features are varitlras can accomplish the
Shipment variation point). Since only one variant can besehcat a time in a partic-
ular variation point, there is aalternative relationshigpetween a variation point and
its variants. Each variant is denoted with @ptional feature because it can be added
or removed according to specific needs. In line with custameunirements, a particu-
lar variant in a variation point will have a higher possityilof being chosen than the
other variants at runtime. As a result, we propose that Bystmnalysts assign a specific
priority to each variant.

In order to give semantics to the variability model, a cotioedetween the highly
abstract elements in the variability model and the low{leeevice operations is neces-
sary. Since the composition model represents the opesdtiche service composition
at any moment, the definition oftaidgebetween the elements in the variability model

Online Book Shopping

mandatory

root feature

Book Total

Calculation

interior node Cart

variation
point optional
o!
Look fora | [Look Again | [Related
Book for a Book Titles .

Google variation Validate
Authentication| point Credit Card

alternative 0NN cosaaaneseaaie s sl s,
variants requires [o ol 3
H Add More | [Payment]+ Bank of America Chase |+ continue | Finalize
Books Calculator_| ;| Credit Card Banking | }| vaig \valid
variation i Payment Wells Fargo ! | Transaction | Transaction
point | Online]

---------------- variation
f point
! poini

variants

DHL |!
Delivery

sms i
Invoice |*

FedEX
Express

i E-mail
< quires varlanfs4 Invoice

Fig. 4. Variability model for the online-book-shopping case study

and the elements in the composition model could be used foosugdynamic adjust-

ments in the underlying service composition. In order torgethis bridge, we propose
the creation of a weaving model [1,2]. The weaving model amsta set of links. Each
link has the following endpoints: the first endpoint refers to el@lements that make
up a composition model. In our case study, these elementBRIN tasks and sub-
processes, which represent Web service and compositesepgrations, respectively;
the second endpoint refers to features in the variabilitgdeho

4.3 Context Model

In order to express the context in a way that supports foreedaning of its current
status and possible arising situations, we propose anagydlased context model that
leverages Semantic Web technology [1]. The context moadeliges a strong semantic
vocabulary for the representation of context knowledgefandescribing specific sit-
uations in the context. The main benefit of the context magitd ienable the analysis
of the domain knowledge using first-order logic. Specificalle make use of the Web
Ontology Languag' (OWL) to analyze the context information that is capturedhsy
Context Monitor.

Figure 5 shows a fragment of the context model for our castysindividuals have
the following datatype propertiehasAddresindicates the address of the service op-
eration;isAvailableindicates whether or not the service operation is curreaylable
(it is a Boolean value)hasResponseTimadicates the current response time in mil-
liseconds to have access to a particular Web service operatdhasExecutionTime
indicates the current execution time in milliseconds théledb service operation takes
to execute a job (response time plus execution time).

At design time, systems analysts extract context conditfiom the context model
as Boolean expressions. Each context condition is repiesses a triple in the form of
(subject, predicate, object}]. Two context conditions in our case study are the follow-
ing: 1) Barnes&NobleBooksUnavailable = (Barnes&NobleBooksyélable, false)

! http://www.w3.org/TR/owl-ref/: World Wide Web Consortiu(W3C).

datatype property

@ isAvailable = TRUE
7{ @ hasExecutionTime = 1,500 ms]
>{ [] p Time = 1,000 ms]

ames&Not ot ericaCredi
IR g ard| ent
! %Q WellsFargoOnline
: anowﬁ okinfo
‘s 7{0 Emaillnve oce
[@ searchBook | T Web
ebService >{‘L pring

Fig. 5. A fragment of the context model for the online-book-shogptase study

which is triggered when thBarnes & Noble Booksomposite service is currently un-
available; and 2YPSShippingHiRespTime(UPSShipping, hasResponseTime, >2,000
ms) which is triggered when the current response time oftR&ShippinyVeb service
operation is greater than 2 seconds.

5 Dynamic Evolution

When dealing with arising context events, it is unthinkatolecarry out manual ad-

justments in composition schema versions because of tleednhintricacy of service

compositions and desired prompt responses. Furthermatieacsystems cannot be
stopped in order to carry out the necessary changes. Therafoautonomic approach
is a must for service compositions that have to adjust to din¢ext.

In this section, we describe models at runtime as a meano#xiwely autogen-
erate evolution policies with simple and semantically rinktructions. To this end,
the discovery and reasoning of any problematic contexttaserarried out in abstract
models at runtime before the problem is evident to users lwgratystems. Specifi-
cally, evolution policiesupport the evolution of multiple composition schema \ansi
by activating and deactivating features in variability rabcbnfigurations according to
context conditions. In order to reflect the changes in vditgimodel configurations on
the running service composition versions, we propose chefigiconfiguration plans
These plans contain highly abstract reconfiguration astioevolve composition mod-
els that represent the underlying composition schemaaressAutonomic mechanisms
are defined to transform evolved composition models into B¥P&L code. The gener-
ated WS-BPEL code is hot-deployed in the Execution Engine.

5.1 Generating Evolution Policies

Instead of manually creating evolution policies, which tBx@e-consuming process, our
framework makes use of semantically rich models to autoggéa¢hem. The model-

driven generation of evolution policies has the followirgnkfits: 1) project resources
can be saved because the models created at design time sed eguuntime; 2) tech-

nology bridges are avoided between design and executifacsst Therefore, the effort

is reduced because there is no need to build such bridgegy@)lmare independent of
the underlying technologies. Therefore, they can desetittenomic behavior through
abstract and easy-to-understand concepts; and 4) moaahédzathe complexity of the

evolution space, thus facilitating the management of aartia behavior.

In our previous research [1], we showed how MoOoRE-WS quehiescontext in-
formation that is collected by the Context Monitor and updahe context model ac-
cordingly. With this information, MORE-WS determines whet or not any context
condition has been accomplished. Since a given contextittmmaan trigger the ac-
tivation or deactivation of several features at runtime pr@pose using theesolution
concept to represent the set of changes in the variabilityahiiggered by a context
condition. Thus, resolutions are the evolution policieg gxpress the transitions among
different configurations of a service composition in terrhadivation or deactivation
of features. Basically, a resolutioR)(can be expressed as a list of paifs §), where
each pair is made up of a featui€) (n the variability model YM) and the stateS) of
the feature. Each resolution is associated to a contextttom¢C).

Re = {(F,S) |Fe [VM] A Se {Active, Inactive}} 1)

The autogeneration of resolutions during execution is iptessvith the following
steps: 1) MoRE-WS selects the problematic service operdtiat has launched the
context condition (e.g. an unavailable service operatioa service operation with an
execution time that violates an SLA); 2) MoRE-WS looks fog gervice composition
versions that may be potentially affected by the problecrsgivice operation; and 3)
MoRE-WS tries to generate a resolution for each service ositipn version that may
be negatively affected by the problematic service opematio

Models at runtime are used in the aforementioned steps tergenresolutions as
follows. In the first step, MORE-WS discovers the problemagrvice operation by ob-
serving the arising context condition, which is expresseterms of elements in the
context model. In the second step, since composition madbsisact service composi-
tions, MOoRE-WS looks for all the composition model versitirest define an abstraction
of the problematic service operation (e.g. in terms of a BPAdNvity). This is key in-
formation because we are interested in evolving the seooogposition versions that
may be affected by particular service operations. In thies&p, since resolutions are
expressed in terms of features, MORE-WS carries out thewviilig steps to activate
and deactivate features in variability model configuragion

1. MoRE-WS runs through the weaving model to find the mapp@tg/een the prob-
lematic service operation (e.g. a BPMN activity) and a feaio a variability model
configuration.

2. MoRE-WS looks for variants in a variability model configtion to fix the feature
that represents the problematic service operation. Ifféasure is a leaf feature,
then MoRE-WS deactivates it and activates the variant thatle highest priority
in the variation point on which the leaf feature dependséffeature that represents
the problematic service operation is an interior node (Whiaps to a composite
service [2]), MORE-WS deactivates its subfeatures andatets a variant together
with its subfeatures.

3. Ifavariant has a “requires” relationship with a featur@terior node, then MoRE-
WS also activates or deactivates the required feature @iigmtnode.

4. Finally, resolutions are not generated if the featurestadjusted is mandatory (i.e.,
there are no variants to be used during the evolution prycess

For example, theBarnes&NobleBooksUnavailableontext condition has been trig-
gered. In this case, MORE-WS uses the strategy above toaerseresolution for the
initial configuration of the case study (in Figure 1). Fig@éreepicts the result after
applying this resolution. Amazon Books and its requirectfiomalities are activated.

Online Book Shopping

Initial Configuration

Book
Management

Look fora
Book

T~
o o
Barnes & Noble
,,,,, g Shopping Cart

‘Bames&NobleBooksUnavailable
{(Barnes & Noble Books, Inactive),
(Search Book, Inactive),
(Show Book Info, Inactive),
(Show Related Books, Inactive),
(Amazon Books, Active),

Books
(Book Searching, Active),
(Book Description, Active),

! Z ~—
Q. e’ ol
(Related Titles, Active), Books | |Amen TR g
. 2 4

Look fora
Book

(Barnes & Noble Shopping Cart, Inactive),
(Amazon Shopping Cart, Active)}.

Fig. 6. Resolution application example. Highlighted featureseeté/ated

5.2 Reflecting Variability Model Changes in Composition Scemes

The changes that are carried out in variability model coméiians have to be reflected
into the underlying composition schema versions. Instdapragramming complex
instructions to modify composition schemes, we proposedasying out evolutions at
the composition model level. Afterwards, evolved compositnodels will be used to
generate WS-BPEL code that orchestrates service opesation

We propose the creation mconfiguration plas to translate the changes in evolved
variability model configurations into composition modeksiens. A reconfiguration
plan contains a set of reconfiguration actions to modify gi@aar composition model
version. Reconfiguration actions are statec¢@sposition model increment€MA)
andcomposition model decremei@VV). These operations take a resolution as input,
and they calculate the modifications to a composition modedien by addingGMA)
or removing CMV) BPMN elements.

Instead of manually coding reconfiguration plans at desiga {which can be time-
consuming and error prone), we propose to autogenerate ahemmtime using the
knowledge in models at runtime. To this end, MORE-WS quetesweaving model
to find the mappings between the features that are expresgedadlutions and their
related BPMN elements. In this way, a given service opematichich is represented
by a BPMN element in a composition model version, will be k&g in an evolved

service composition if and only if its related feature in adl@tion isactive That is, a
composition model is evolved through the activation or tieation of features.

For example, giverR By nes& Noble BooksUnavailable 10T the initial configuration in
Figure 1, the result is the following reconfiguration pl&vV = {Barnes & Noble
Books, Barnes & Noble Shopping CaghdCMA = {Amazon Books, Related Titles,
Amazon Shopping CartFigure 7 shows the evolved composition model.

Fig. 7. Evolved composition model for the case study

5.3 Generating WS-BPEL Code and Hot Deployment

In order to realize our approach in an industrial environtniés necessary to trans-
form the evolved composition models into WS-BPEL code anddeploy this code
on a WS-BPEL engine. To this end, MORE-WS converts compmusitiodel versions
through model-to-text transformations into WS-BPEL filefich support service or-
chestrations. In order to translate a BPMN composition rhode WS-BPEL code,
MoRE-WS makes use of the Babel projedievertheless, although the Babel tool uses
model-to-text transformations to generate a WS-BPEL dantritom a BPMN model,
the generated WS-BPEL document is not complete. For exannpdeks information
about the partner links of services participating in thecpss and the variables used in
the process. Thus, MORE-WS injects pieces of XML code intti@dar points in the
initial WS-BPEL file in order to obtain ready-to-run WS-BPEbde. Then, MORE-WS
puts the complete WS-BPEL file into the deployment directdfg have implemented
a versioning strategy for the deployment directory to pnétlee EXECUTION ENGINE
from deleting all the running instances when a new compmsiichema is deployed.
To this end, a new deployment directory with an increasingige number is deployed
with every dynamic evolution. New instances run accordintipe latest version.

6 Dynamic Adaptation

The dynamic evolution of composition schema versions is side of the coin. The
other side is the dynamic adaptation of instances. Howehisr,is not an easy task
since each instance may be running a different operatidmeasame time. For exam-
ple, some instances are almost finishing their executiotevdthers are just starting.

2 http://www.bpm.scitech.qut.edu.au/research/projeldprojects/babel/tools/: Babel tools.

Instead of migrating all instances to apply changes, wegsefa set of strategies to
decide whether or not instances should migrate to new vessid the composition
schema. This is an important aspect because uncontrofiezhice migration will lead
to inconsistencies or errors [24].

The applicability of the dynamic adaptation strategiesdsatibed in a set of in-
stances in our case study. The left-hand side of Figure &tettie first version of a
composition model (according to Figure 1) and four instartbat run conforming to
this model. The right-hand side of the figure shows the sewerglon of the composi-
tion model after a dynamic evolution has been triggered &bdih theBarnes&Noble-
BooksUnavailableontext condition. Each composition model version has afsat-
tivities that have evolvedHvolved Ac), and running instances have the following sets
of activities: 1) a set of already executed activiti€secuted Ac); 2) a current running
activity or event — e.g. a start or end eve@ufrentAcEv); and 3) a set of coming
activities that have not yet been executed in the workflG\wrhing Ac).

Version 1 of the Composition Model Version 2 of the Composition Model
LF] LF]
oA E]-4 % % o % %
o -meof @y | emeyeen)
& &0 ® @0

Running Instances Migrated Instances

" L F]
ﬂonﬂ‘}a"
o &0
2"

{F] {F]
4 4
o~ g-Te-0-(Eh { e/} oG] "9“’

< 0 Q> &0
3 LF]
o Z
o~ A +E}l-® [0 e} ® ® A = Barnes & Noble Books X =Amazon Books
skl {c] B = Barnes & Noble Shopping Cart Y = Related Titles
% C = Google Authentication Z = Amazon Shopping Cart
D = Payment Calculator
P 7] E = Bank of America Credit Card Payment # Running Activity/Event

G = UPS Shipping

z & F = E-mail Invoice ® Already Executed Activity
%

Fig. 8. Applicability of the strategies for dynamic adaptation

The migration of instances from an old composition schengartew one is carried
out when it is safe to do so. That is, only those instances &eatad which are com-
pliant with the old version of the composition schema [24je8fically, an instance
is compliantwith a composition schems3 if the current execution history afcan be
created based dB[22]. All other instances remain running according to the\arsion
of the composition schema. In our case, the execution Kistoeveryl is managed at
the composition model level (it keeps the updatad-rent AcEv information).

We propose migrating instances in two cases. The first cagealsthe activi-
ties in the instance have not yet been executed EeegcutedAc = @). Therefore,
adaptations will be done i@'omingAc and will not affect the previous results gen-
erated byExecutedAc (seell). The second case is Furrent AcEv has evolved at
the composition model and adaptations do not have to besdawrit in ExzecutedAc
(i.e., ExecutedAc (| EvolvedAc = @) — sed2. Therefore, this strategy prevents the

adaptation offzecuted Ac to avoid inconsistencies fiurrent AcEv andComing Ac.
During migrations, MORE-WS moves the instances that depenevolved composi-
tion schema versions from an active state to a passive stateoid undesirable ef-
fects. Aninstance is kept in the passive state until a gjydtas been applied on it (i.e.,
when MoRE-WS has decided whether or not the instance candrated). Afterwards,
MoRE-WS reactivates passive instances.

On the other hand, instances do not migrate when it is ungafmmecessary to
do so. Specifically, an instance keeps running on the oldoreisf the composition
schema in two cases. The first case i€ifrrent AcEv has evolved and any other ac-
tivity in ExecutedAc has also evolved (i.eFzecutedAc (| EvolvedAc # @). For
example]3 is not migrated since the Barnes & Noble Books service opperdivhich
had to evolve) has already been executed. The dynamic didapté the Barnes and
Noble Shopping Cart service operation may cause an incengeawith the Barnes &
Noble Books service operation (they cannot coexist). Thersgcase is if all the activi-
ties that could be adapted have already been exechteet(ited Ac (| EvolvedAc =
EvolvedAc). In this case, it is better to let the instance finish its exien instead of
spending resources on unnecessary migrationd4see

7 Prototype Implementation

A prototype system validates the feasibility of our appioakhe composition model
and the variability model are specified in the XML Metadatietohange (XMI) for-
mat. They are processed by the software infrastructureigedvin the Eclipse Mod-
eling Framework (EMP)to specify and execute queries against them at runtime. The
composition model conforms to the BPMN metamodel, and thialéity model con-
forms to the MOSKitt4SPt metamodel. The weaving model is created in the ATLAS
Model Weavet tool. Context conditions are specified as SPARQL Protocd|RDBF
Query Languad®(SPARQL) queries to the ontology in the context model [1]s&l
MoRE-WS uses the EMF Model Que(EMFMQ)’ to activate or deactivate features
in variability model versions during execution. SALMon [Bjplements the Context
Monitor because its components are mostly technologygeddent and they act as
services, making its architecture customizable for ouppse. Apache OD#¥Ewas cho-
sen as the Execution Engine because it is compliant with WW&EtBand offers ma-
ture hot-deployment support. Instead of extending thetfanality of the engine, our
approach does not require changes to the engine. The infiomeabout instances is
retrieved by the BPEL Management API of Apache ODE and updayeMoRE-WS

in the composition model versions. Figure 9 depicts the inmprototype when the
Barnes&NobleBooksUnavailabtmntext condition has been triggered. The composi-
tion model shows the activities that have already been égd@nd the current running

% http:/lwww.eclipse.org/modeling/emf/: EMF.

4 http://www.pros.upv.es/m4spl: MOSKitt4SPL.

5 http:/lwww.eclipse.org/gmt/amw/: ATLAS Model Weaver.
5 http:/iwww.w3.0rg/TR/rdf-spargl-query/: SPARQL.

7 http://www.eclipse.org/modeling/emf/: EMF Model Query.
8 http://ode.apache.org/: Apache ODE.

activity in an instance. The figure also shows a variabilityd@l configuration, a con-
sole with evolution and adaptation actions, and the motielsare used at runtime.

uuuuuuuuuuuuu

||®
i
:

mE -

Fig. 9. Running prototype when facing tigarnes&NobleBooksUnavailablontext condition

8 Evaluation

In this section, we describe the evaluation results of caméwork. Specifically, we
evaluate the following two aspects: 1) the dynamic evotuperformance when the
number of evolved service operations increases in serwngositions of a growing
size; and 2) the dynamic adaptation performance for an @&samg number of evolved
service operations. Since evolutions and adaptationsaaried out at runtime, the per-
formance of model-driven operations is a key aspect to beated. Finally, we provide
a brief discussion of the realizability of our approach dgrihe development process.

The experiments were carried out on a PC with an Intel Core @ D0 GHz pro-
cessor and 4 GB RAM with Ubuntu version 10.04 and Kernel Linepsion 2.6.32-36-
generic. The Web services ran on Apache A%igrsion 1.6.1, which was deployed as
a WAR distribution on Apache Tomc&tversion 7.0.8. The hot deployment was car-
ried out by MoRE-WS on Apache ODE version 1.3.5, which wadalega on a second
instance of Apache Tomcat. SALMon and MoRE-WS ran on the shaviee. Six com-
position schemes of increasing size were used in the expatéfsee Table 1) The
objective was to evolve the first version of each one of theseposition schemes into
a second version. The experiments were carried out withtyeightances running on
each composition schema.

% http://axis.apache.org/axis2/java/core/: Apache Axis2

10 http://tomcat.apache.org/: Apache Tomcat.

11 cs implements our case study when the Barnes&NobleBooksUnavailabontext condi-
tion has been triggered.

|Composition Schema [csijcsgcsgcsqcsgcsg
Service Operations 7 116|33|50(|68]|85

Evolved Service Operatign2 | 5 | 8 | 12| 17| 25
Table 1. Composition schema configurations that were used in theriexpsts

Figure 10 depicts the results of the experiments. Spedificsdction a presents
the execution time in milliseconds during dynamic evolnsioThe results are divided
into the four main tasks, which were carried out during dyiteewmolutions. Theind a
context conditiongenerate a resolutigrandgenerate a reconfiguration plasperations
were fast, even for large composition schemes. The exectie of thefind a context
condition and generate a reconfiguration plaoperations remained stable while the
generate a resolutiomperation had an exponential growth. Tgenerate WS-BPEL
& hot deploymenbperation took the longest time. The most expensive taskig t
operation was the transformation from the evolved commsitnodel to the initial
WS-BPEL file using Babel, which took around 95% of the timelircases. Therefore,
in order to reduce the impact on the performance of instarMdefRE-WS starts the
model-driven analysis of dynamic adaptation strategiderbetriggering WS-BPEL
code generation and hot deployment. As a result, instarcastthave to be keptin the
passive state longer than necessary.

3500
3000
2500

2000
1500
1000 ® Find Context Condition
500 = Generate a Resolution
0 — - — - - = Generate a Reconfiguration Plan

Cs1 Cs2 CS3 CS4 Cs5 (CS6 ™ Generate WS-BPEL & Hot

Deployment
m I I I I I I
100
o lm B W m WA
2 6

Composition Schemas

Execution Time in Milliseconds

econds

£
Execution Time in Millise

CaNw s OO N ®O©

= Migrate if there are not executed
acivities strategy

= Migrate running activity strategy
No migrate running activity
strategy

= No migrate if all activities have

. I been executed strategy
| Nl § |

Cs1 Cs2 CS3 Cs4 Css Csé

Composition Schemas

Fig. 10.Execution time for a) dynamic evolutions and b) dynamic &align strategies

Section b in Figure 10 presents the average execution timmaslliseconds taken in
the dynamic adaptation of the instances that rurC&to CS. The strategies that re-
quired migrations took the longest time since instancedthbe adapted. Between the

two strategies that do not require migrations, tleemigrate if all activities have been
executedstrategy took a longer time since MORE-WS had to be sure thavelved
activities had previously been executed. The executioe fion dynamic adaptations
grew exponentially as service operations and evolved®sepperations increase.

The amount of effort required by our approach during the kbgraent process was
minimal. At design time, the creation of the supporting medeas straightforward
because it was supported by enterprise modeling tools, Atsextra work was required
to carry out the model-driven operations at runtime becMmRE-WS automatizes the
dynamic adjustments. Also, since our approach is tranaptayéhe Execution Engine,
the engine does not have to be modified for hot deployment.

In summary, our solution provided a feasible performananéor large service
compositions with an increasing number of evolved servigerations. Specifically,
the generation of proactive dynamic evolution actions veamgied out without exces-
sively affecting the execution time. The generation of WIBSER code from composi-
tion model versions took the longest execution time. Howeés situation was mit-
igated by executing the dynamic adaptation strategies fiallpawith the generation
of WS-BPEL code and hot deployment. Also, the strategiegtferdynamic adapta-
tion of instances had good execution times in all cases.liggtot least, our approach
required a minimum effort during the development process.

9 Related Work

Research works related to dynamic service compositions bevded to implement

variability constructs at the language level. For examBIEENE [13] extends WS-

BPEL with Event Condition Action (ECA) rules that define cegaences for condi-

tions to guide the execution of binding and rebinding seffenfiguration operations.

VXBPEL [15] is an adaptation of WS-BPEL that allows variatiarins, variants, and

configurations to be defined for a process in a service-eesystem. In [6], Web ser-

vice monitoring directives and recovery strategies araesged with two languages.
We argue that implementing and managing dynamic evolutbiise language level is

complex, especially in large systems. Moreover, the trexsbieen on reactive dynamic
evolutions [4,16], which is time-consuming and can leadrtiwanted results.

We highlight relevant related approaches that use modeim#tne to support the
dynamic evolution of service compositions. In [10], Bosogt al. introduce a tool
that offers components for monitoring and reconfiguring \&etvice-centric systems.
However, the supporting models and their related recordiipm mechanisms are not
presented in a detailed way. In [11], Calinescu et al. piteadnol-supported frame-
work for the QoS management of self-adaptive, servicesbagstems. It combines
formal specification of QoS requirements, model-based Qafuation, monitoring
and parameter adaptation of the QoS models, and planningaaltion of system
adaptation. @QSMOS is focused on the translation of high-level QoS requénets into
probabilistic temporal formulas and in the formalizatidriteese QoS requirements. In
[17], Menasce et al. present a model-driven framework thatiges runtime evolution
of service compositions in response to changing operatmgliions. Dynamic evo-
lutions are carried out through patterns, which are notgerierated at runtime. Thus,

a system restart is required to modify them. Moreover, itdsalear how the service
coordination logic can be deployed in a WS-BPEL engine. 03,[Rlorin et al. propose
combining model-driven and aspect-oriented techniquasipport runtime variability
from requirements to execution. However, this solutionasfocused on Web services.
In [5], Aschoff et al. describe an approach for the proactivelution of service com-
positions using aexecution modeHowever, to the best of our knowledge, the afore-
mentioned approaches do not handle the dynamic evolutiorudifple versions of the
composition schema. Moreover, they do not describe the amsims for the dynamic
adaptation of instances. Therefore, it is unclear how int&anigrations are done.

The approaches that are presented above make evidentttiédveards implement-
ing reactive dynamic evolutions of service compositionthatlanguage level, which
can be complex and time-consuming. Model-driven apprcabhge made a first step
in managing dynamic service compositions at a higher adigralevel. However, they
lack support for the dynamic evolution of several versiohthe composition schema
and for the dynamic adaptation of instances. Moreover, mastel-driven works pro-
pose reactive solutions for self-adjusting service corntjpns.

10 Conclusions and Future Work

In this paper, we have presented a framework that is basedsynte-understand mod-
els at runtime to support the proactive dynamic evolutionarfiposition schema ver-
sions, and guide the dynamic adaptation of running instar&gecifically, we focus on

three aspects of dynamic evolution: the generation of éilyolicies, the generation
of reconfiguration plans, and the generation of WS-BPEL cau hot deployment.

Dynamic adaptations are possible through a set of modediistrategies. Autonomic
behavior is achieved by a prototype based on MORE-WS. Aruatiah demonstrates
the feasibility of our approach. As future work, we will lodér alternatives for the

transformation from BPMN composition models to WS-BPEL etadlreach better ex-
ecution times. One possible solution is to connect reusadile fragments to features.
At runtime, these fragments can be added or removed acgiydin

References

1. Alférez, G.H., Pelechano, V.: Context-aware autonomeels services in software product
lines. In: SPLC. pp. 100-109 (2011)

2. Alférez, G., Pelechano, V.: Systematic reuse of web sesvihrough software product line
engineering. In: 9th IEEE European Conference on Web Ses\iECOWS). pp. 192 —199
(sept 2011)

3. Ameller, D., Franch, X.: Service level agreement morni®4LMon). In: Proceedings of the
Seventh International Conference on Composition-Basév8e Systems (ICCBSS 2008).
pp. 224-227. IEEE Computer Society, Washington, DC, USA&20

4. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebdhi PAWS: A framework for
executing adaptive web-service processes. IEEE Soft\8) 239-46 (Nov 2007)

5. Aschoff, R., Zisman, A.: Qos-driven proactive adaptatid service composition. In: Pro-
ceedings of the 9th international conference on ServiderBad Computing. pp. 421-435.
ICSOC’11, Springer-Verlag, Berlin, Heidelberg (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Baresi, L., Guinea, S.: Self-supervising BPEL proced$#sE Trans. Softw. Eng. 37, 247—

263 (March 2011)

. Benavides, D., Cortés, R.A., Trinidad, P.: AutomatedsRaag on Feature Models. In: The

17th Conference on Advanced Information Systems Enging€CAISE’05). LNCS (June
2005)

. Blair, G., Bencomo, N., France, R.B.: Models@ run.timemuter 42, 22-27 (October

2009)

. Bosch, J.: Design and use of software architectures:tegppnd evolving a product-line

approach. ACM Press/Addison-Wesley Publishing Co., Nevk YdY, USA (2000)
Bosloper, I., Siljee, J., Nijhuis, J., Hammer, D.: Ciragiself-adaptive service systems with
DySOA. In: Proceedings of the Third European Conference @b \Services. pp. 95-.
ECOWS 05, IEEE Computer Society, Washington, DC, USA (3005

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirand®&a, Tamburrelli, G.: Dynamic QoS
management and optimization in service-based systemg& TE&hsactions on Software En-
gineering 37, 387-409 (2011)

Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autoo@oinputing through reuse of vari-
ability models at runtime: The case of smart homes. CompieB7-43 (October 2009)
Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service cpusition execution environ-
ment supporting dynamic changes disciplined through rutesDan, A., Lamersdorf, W.
(eds.) Service-Oriented Computing — ICSOC 2006, Lecturedlim Computer Science, vol.
4294, pp. 191-202. Springer Berlin / Heidelberg (2006)

Dey, A.K.: Understanding and using context. Personadltous Comput. 5, 4-7 (January
2001)

Koning, M., Sun, C.a., Sinnema, M., Avgeriou, P.: VXBPBlupporting variability for web
services in BPEL. Inf. Softw. Technol. 51, 258-269 (Feby2009)

Lin, K.J., Zhang, J., Zhai, Y., Xu, B.: The design and iempentation of service process
reconfiguration with end-to-end QoS constraints in SOAvS@riented Comput. Appl. 4(3),
157-168 (Sep 2010)

Menasce, D., Gomaa, H., Malek, S., Sousa, J.: SASSY:Adwork for self-architecting
service-oriented systems. IEEE Software 28, 78-85 (2011)

Michimayr, A., Rosenberg, F., Leitner, P., Dustdar,Ed-to-end support for QoS-aware
service selection, binding, and mediation in VRESCo. |IEE&E. Serv. Comput. 3, 193—
205 (July 2010)

Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., 8a@bA.: Models@ run.time to support
dynamic adaptation. Computer 42, 44-51 (October 2009)

Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M.pb&dj, A., Dehlen, V., Blair, G.: An
aspect-oriented and model-driven approach for managingrdic variability. In: Proceed-
ings of the 11th International Conference on Model DrivegiBaering Languages and Sys-
tems. pp. 782-796. MoDELS '08, Springer-Verlag, Berlinjdétberg (2008)

Pohl, K., Béckle, G., Linden, F.J.v.d.: Software Prdduce Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag New York, Inc..aBeas, NJ, USA (2005)
Rinderle, S., Reichert, M., Dadam, P.: Correctnessraifor dynamic changes in workflow
systems: a survey. Data Knowl. Eng. 50(1), 9-34 (Jul 2004)

Song, W., Ma, X., Dou, W., L, J.: Toward a model-based@ggh to dynamic adaptation
of composite services. In: Proceedings of the 2008 IEEErat@®nal Conference on Web
Services. pp. 561-568. ICWS '08, IEEE Computer Society,hiviagon, DC, USA (2008)
Weber, B., Reichert, M., Rinderle-Ma, S.: Change pastemd change support features -
enhancing flexibility in process-aware information syste®ata Knowl. Eng. 66, 438—-466
(September 2008)

